ジャイロ運動論的シミュレーションコードGKVを 用いた微視的不安定性・乱流輸送解析

前山伸也 名大理

第7回GKV講習会 2023年3月31日

GKVホームページ - <u>https://www.p.phys.nagoya-u.ac.jp/gkv/</u> GitHub organization - <u>https://github.com/GKV-developers/</u>

前回講習会からの変更点①

今回講習会で用いるバージョン: gkvp_f0.62

前回講習会(gkvp_f0.61)からのユーザレベルの変更点:

リングダイポール磁場配位に対応 [坂野,日本物理学会2023春]
 利用方法はrun/gkvp_namelistで以下のパラメータを設定

前回講習会からの変更点2

今回講習会で用いるバージョン: gkvp_f0.62

前回講習会(gkvp_f0.61)からのユーザレベルの変更点:

回転フラックスチューブモデルによる平衡ExBフローシアの実装 [前山, 日本物理学会2022春]
 利用方法はrun/gkvp_namelistで以下のパラメータを設定

&rotat mach = 0.d0,	# machやuprimeの効果は未実装	<pre>run/gkvp_namelist</pre>
uprime = $0.d0$,		
<pre>gamma_e = 0.4d0, &end</pre>	# ExBフローシア	

- トーラス平衡 equib_type = "s-alpha", "analytic", "circ-MHD", "eqdsk", "vmec"に対応。("slab", "ring"は対象外)
- ・ 実験家向けメモ: トロイダル磁束の平方根で定義した規格化小 半径位置 $\rho = \rho_0$ での径電場シア $\frac{1}{a^2} \frac{d^2 \Phi}{d\rho^2} \delta[V \cdot m^{-2}]$ の単位で 計測し、基準とする磁気軸の磁場 B_{ref} [T], 主イオンの熱速度 V_{ref} [m/s], 磁気軸の大半径 L_{ref} [m] からなる $\frac{B_{ref}V_{ref}}{L_{ref}}$ [V·m⁻²] で規格化した値が gamma_e
- 関連したメトリック情報出力ファイル hst/gkvp.mtf.* が追加。
- 理論については論文執筆中。

今回講習会の目標

GKVの実行から解析まで→基本的には、前回(第6回)講習会資料と同様。

Python版ポスト処理プログラム diag_python によるポスト処理まで行う。

Contents

- GKVのコード構造
- 数値パラメータ、物理パラメータ、計算機環境の設定
- コンパイルおよび実行
- ・ 出力データ構造
- ・ ポスト処理
- まとめ

タ-	ーミナルコマ	ンド表記例(薄青色で囲って示します)
\$	pstime	# プラズマシミュレータ計算資源量確認
\$	lsquota	# プラズマシミュレータディスク利用確認
\$	rscinfo	# プラズマシミュレータリソース情報確認

ソースコード表記例(黒色で囲って示します)			
PROGRAM GKV_main	<pre>src/gkvp_main.f90</pre>		
!			
! GKV+: nonlinear gyrokine	tic Vlasov code		

始めに:GKVコードのダウンロード

0	GKV-developers/gkvp: Gyro	kin: × +		-	
€)→	C 🕜 🖗 htt	ps:// github.com /GKV-developers/gkvp	⊘ ☆ ○	、検索 Ⅲ • □	. ≡
0	Search or jump to	Pulls Issues Market	place Explore	↓ + -	@ -
🖫 GI	KV-developers / g	kvp	⊙ Watch ▾ 0	☆ Star 2 양 Fork	1
<> (Code ① Issues 3	ំង Pull requests 🕑 Actions 🔟 គ	Projects 🛱 Wiki	③ Security	
ų	main 👻	Go to file Add file	⊻ Code -	About	鐐
6	smaeyama Merge pull r	equest #6 from GKV-developers/add	on 9 Feb 🕚 15	Gyrokinetic Vlasov simulation code GKV	
	benchmarks	gkvp_f0.59	4 months ago	Readme	
	extra_tools	gkvp_f0.59	4 months ago		
	lib	gkvp_f0.59	4 months ago	Releases 2	,
	run	Makefile/sub.q for ITO is modified. NetCDF	last month	S gkvp_f0.60 Latest	
	src	sub.q_fugaku is modified, while NetCDF4+p	last month	+ 1 release	
Ľ	README.md	gkvp_f0.59	4 months ago		
Ľ	README_for_nameli	gkvp_f0.59	4 months ago	Packages	
۵	Version_memo.txt	Modify Version_memo.txt	last month	No packages published	
				Publish your first package	
REA	DME.md		Ø	Language	
0	SvroKineti	Vlasov simulation	ode.	Languages	
			Loue.	• Fortran 92.7%	
C	JVA			 Shell 6.2% Other 1.1% 	

【方法1】Webブラウザから https://github.com/GKVdevelopers/gkvp/ にアクセスし、 Releasesボタンからgkvp_f0.62を選 択し、gkvp-f0.62.tar.gzをダウンロード。

【方法2】 wget コマンド プラズマシミュレータログインメニュー から[3] Shell promptにログインして、

\$ wget https://github.com/GKVdevelopers/gkvp/archive/f0.62.tar.gz -0 gkvp-f0.62.tar.gz

【方法3】 git コマンド Gitに慣れている方は、[3] Shell promptにログインして、git clone.

同様に、diag_pythonもダウンロードしてください

GitHub - GKV-developers/diag_F × + − □ ×					
$\leftarrow \ \ \rightarrow \ \ {\sf G}$	https://github.com/GK	A ^N	ର ୪୦ ୪≡	Ē	
Ç				Sign up	≡
🛱 GKV-develo	pers / diag_python Public	🗘 Notificat	ions & Fork 1	☆ Star 0	•
<> Code 💿 Is	sues 🕄 Pull requests 🕟 Action	ns 🗄 Pi	rojects 🕮 Wiki		
양 main -	Go to file	Code -	About		
smaeyama M	erge pull request #4 9 minutes	ago 🕑 21	Post-processing to output converted	ool for GKV to NetCDF	binary
📄 data	diag_fft, diag_geom are modi 12	months ago	Readme		
src src	modify out_mominrz to treat	28 days ago	 ☆ 0 stars ① 1 watching 		
README.md	Add README.md 17	months ago	₩ 1 fork		
🗋 main.ipynb	add simple_example.ipynb	17 days ago			
🗅 main.py	add simple_example.ipynb	17 days ago	Releases 3		
🗅 nbconv.sh	add simple_example.ipynb	17 days ago	🛇 diag_python_f0.	.61_02 (Latest)
🗅 simple_exa	add simple_example.ipynb	17 days ago	8 minutes ago		
🗅 simple_exa	add simple_example.ipynb	17 days ago	+ 2 releases		
E README.md			Packages No packages published		

【方法1】 Webブラウザから https://github.com/GKV-<u>developers/diag_python/</u>にアクセスし、 Releasesボタンから、diag_pythonf0.61 02.tar.gzをダウンロード。

【方法2】 wget コマンド プラズマシミュレータログインメニューか ら[3] Shell promptにログインして、

\$ wget https://github.com/GKVdevelopers/diag_python/archive/f0.61 02.tar.gz -0 diag pythonf0.61 02.tar.gz

【方法3】 git コマンド Gitに慣れている方は、[3] Shell prompt にログインして、git clone.

プラズマシミュレータログインメニューから、[1] Front System にログイン。

ダウンロードしてきたソースコード(例えばgkvp-f0.62.tar.gz)を展開。

\$ tar xzvf gkvp-f0.62.tar.gz

作成された gkvp-f0.62/run/ ディレクトリ内に移動し、プラズマシミュレータ向けMakefile, sub.q, shoot スクリプトをbackup/ディレクトリからコピー・上書き。

- \$ cd gkvp-f0.62/run/
- \$ cp backup/Makefile_ps_sx ./Makefile
- \$ cp backup/sub.q_ps_sx ./sub.q
- \$ cp backup/shoot_ps_sx ./shoot

プラズマシミュレータ向けテンプレート Makefile_ps_sx
プラズマシミュレータ向けテンプレート sub.q_ps_sx
プラズマシミュレータ向けテンプレート shoot_ps_sx

※現状、スーパーコンピュータ Fugaku (RIKEN R-CCS), Plasma Simulator (NIFS), JFRS-1 (IFERC-CSC), Flow (Nagoya Univ.), ITO (Kyushu Univ.)向けのテンプレートが用意してあります。また、小規模PCクラスタ(名大P研)や個 人ラップトップ(Windows-WSL(Ubuntu),Mac)での利用事例もあります。

NetCDF4+Parallel HDF5利用の設定

gkvp_f0.60以降、バイナリ出力形式として、既存のFortranバイナリ分割出力の他に、NetCDF並列出力が選択可能。 システムにNetCDF4+Parallel HDF5がインストールされていることが要件。

プラズマシミュレータの例:

1. SX用クロスコンパイル済みNetCDF4+Parallel HDF5のモジュールをロードする。

\$ module load netcdf-parallelIO-fortran-sx

2. Makefile内30-31行の、FILEIO=gkvp_fileio_fortranをコメントアウトし、FILEIO=gkvp_fileio_netcdfを有効にする。 これにより、GKVバイナリファイル入出カモジュール GKV_fileio をNetCDF用に切り替える。

3. バッチジョブスクリプト sub.q 内でもモジュールをロードしておく。

module load netcdf-parallelIO-fortran-sx

GKVのコード構造(バージョンgkvp_f0.62)

gkvp-f0.62/ README for namelist.txt 簡単な説明書き Version memo.txt 最近の更新履歴 src/ ソースファイル群 gkvp header.f90 解像度、MPIの設定モジュール gkvp out.f90 標準データ出力モジュール lib/ 乱数・ベッセル関数ライブラリ呼び出しモジュール extra tools/ ポスト処理ツール等 fig stdout f0.62.tar.gz アスキーデータのPDF化 run/ コンパイルおよび計算実行 gkvp namelist 物理パラメータの設定 sub.q バッチジョブ用スクリプト(計算機依存) shoot ジョブ投入スクリプト(計算機依存) Makefile コンパイル情報(計算機依存) backup/ 各計算機向けsub.q,shoot,Makefileのバックアップ

GKVで扱える問題

ある平衡の下で、微視的不安定性や乱流揺動、粒子・熱輸送の局所解析。

<u>1. 線形解析</u>

- 線形モードの成長率、実周波数、揺動間のクロスフェーズなどを調べる。
- 線形モードの独立性から、特定の波数のみ解析するため計算は早い。
- 非線形飽和機構が入っていないので、振幅の絶対値は求まらない。

<u>2. 非線形解析</u>

- 揺動スペクトル、粒子・熱輸送、その他諸々の乱流揺動解析を行う。
- 乱流混合を扱うために多数のモード間の非線形結合を解く必要があり、計算に時間がかかる。要求解像度も問題に依るので、数値的健全性確保のためにエントロピーバランスやスペクトルの収束性確認が必要。

今日の実習の問題設定

円形トカマクモデル磁場の下で、微視的不安定性の線形解析をする。

- 1. 物理パラメータを、run/gkvp_namelistに入力する。
- 2. src/gkvp_header.f90に計算格子数およびMPI並列数を入力する。
- 3. バッチジョブスクリプトsub.qを設定する。
- 4. ジョブ投入スクリプトshootにディレクトリの設定をする。
- 5. コンパイルし、計算を実行。
- 6. 出力データを解析する。(ポスト処理ツールの利用)

※非線形解析も計算タイプ"nonlinear"とし高解像度化する位で同様の手順。

1. 実験→GKV換算、namelistへの入力

実験計測より、

- 解析する半径位置を決めて、局所パラメータを算出
- MHD平衡を構築

GKVで解析するため、

- 実験→GKVパラメータ換算(規格化)
- 対応する物理パラメータのrun/gkvp_namelistへの入力
- MHD平衡からGKVで必要となるメトリックデータへの加工

今回はMHD平衡磁場配位データは利用せずに、s-alphaモデルと呼ばれる円形トカマク 磁場モデルを用いるので、必要なパラメータは逆アスペクト比、安全係数、磁気シア、密 度勾配、温度勾配などのみ。

※実験データの換算やMHD平衡磁場配位データの読み込みについては今回は割愛。過去講習会資料(例えば 第3,4回はVMEC平衡データを読み込んだハンズオン実習を実施)など参照。 https://www.p.phys.nagoya-u.ac.jp/gkv/_src/1163/gkv_setting_191213.pdf

1. 実験→GKV換算、namelistへの入力

run/gkvp_namelist

```
&cmemo memo="GKV-plus f0.62 developed for pre-exa-scale computing", &end
                                           # 計算タイプ lin freg / nonlinear
&calct calc type="lin freq",
      z_bound="outflow",
      z filt="off",
      z calc="cf4",
      art diff=0.1d0,
      init random=.false.,
      num_triad_diag=0, &end
&triad mxt = 0, myt = 0/
&equib equib_type = "analytic", &end
                                           # 平衡磁場モデル analytic / s-alpha /
                                               s-alpha-shift / circ-MHD /
                                               vmec / eqdsk / slab / ring
&runlm e_limit = 60.d0, &end
                                           # 計算実行の実時間[秒]
                                           # シミュレーション上の上限時間[R<sub>ref</sub>/v<sub>ref</sub>]
& times tend = 200.d0,
      dtout_fxv = 10.d0,
                                           # データ出力の時間間隔1
                                           # データ出力の時間間隔2
      dtout ptn = 0.1d0,
                                           # データ出力の時間間隔3
      dtout eng = 0.1d0,
                                           # 自動時間刻み幅の調整間隔
      dtout dtc = 0.1d0, &end
```

run/gkvp_namelist内の計算実行に関わる部分を適宜編集する。 (例:非線形計算を行う calc_type="nonlinear",計算実行時間を延ばす e_limit=3600.d0)¹⁴

1. 実験→GKV換算、namelistへの入力

&physp	$R0_{Ln} = 2.22d0,$	#	規格化密度勾配 R_0/L_{n_s}	<pre>run/gkvp_namelist</pre>
	$R0_{Lt} = 6.92d0,$	#	規格化温度勾配 R_0/L_{T_s}	
	nu = 1.d0,			
	Anum = 1.d0,	#	質量数 m _s /m _{ref}	
	Znum = 1.d0,	#	価数の絶対値 e _s /e	
	fcs = 1.d0,	#	電荷密度 e _s n _s /(en _{ref})	
	sgn = 1.d0,	#	電荷の符号 $e_s/ e_s $	
	tau = 1.d0,	#	温度 T _s /T _{ref}	
	dns1 = 1.d-2,			
	tau_ad = 1.d0,			
	$lambda_1 = 0.00,$			
	beta = 0.d0,	#	フラスマベータ値 $\mu_0 n_{ref} T_{ref} / B_{ref}^2$	
 9 pp p p :		#	磁力線士向ギックフサノブ(ポロノダルタ	6 -7 5-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
anpert	$\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j$	# #	磁力級力向ホックスリイス(ホロイダルア) 磁力線ニベル大向ボックフサイブ リット	a C ± n_tnt*p1/
	Kymin = 0.0500,	# #	磁力稼ノヘルクロホックスリイス Iy = 半久士白ザックフサイブ Iy = ni//ym	pi/kymin in
	$ \begin{bmatrix} m \\ J \end{bmatrix} = \mathbf{I}, $	#	+住力内小ツクスリイス IX = p1/KKIII	LII c hat*kvmin/m il
° confn	$del_c = 0.00$, della	#		
αсоптр	$eps_r = 0.1800$,	#	ぜアスペアに <i>T</i> at-fluxtube-center/ <i>L</i> ref	
	$eps_{1} = 1.00$,	#	去 今夜物 。	
	$q_0 = 1.400$	#		
	$s_{\text{nac}} = 0.000$	#		

2. src/gkvp_header.f90に計算格子数とMPI並列数を入力する。

2. src/gkvp_header.f90に計算格子数とMPI並列数を入力する。

ここで、 nx | kxモード数 -nx:nx global_ny | kyモード数 0:global_ny (さらにnxw>nx*3/2, nyw>global_ny*3/2となるように設定。) global_nz | 磁力線方向座標 -n_tht*pi<zz<n_tht*piを -global_nz:global_nz-1で離散化 global_nv | 磁力線方向速度 -vmax<vl<vmaxを1:2*global_nvで離散化

global_nm | 磁気モーメント 0<mu<vmax²/2を0:global_nmで離散化

nprocw, nprocz, nprocv, nprocm, nprocs はky,zz,vl,mu方向と粒子種sのMPI領域分割数。

ただし、

- ✓ (global_ny+1)/nprocw, global_nz/nprocz, global_nv/nprocv, (global_nm+1)/nprocmは整数。
- ✓ nprocsは扱う粒子種数と一致。

3.バッチジョブスクリプトsub.qを設定する。

		run/sub.q
#PBS -q small	# queue name	
#PBSgroup= 20234 ◀	<u># resource group</u>	
#PBS -T necmpi	# necessary for MPI job	GKV講習会用グ
<pre>#PBS -1 elapstim_req=00:15:00</pre>	<pre># elapsed time limit</pre>	ループID 22267 に
#PBS venode=4	# total number of VE	変更してください。
<pre>#PBSvenum-lhost=8</pre>	<pre># number of VE per a logical</pre>	node
<pre>#PBS -v OMP_NUM_THREADS=1</pre>	<pre># number of threads per MPI</pre>	process
MPI_procs=32	<pre># number of MPI processes (=</pre>	venode*8 for flat MPI)

run/sub.qでMPI/OpenMP並列数を指定する。

- ✓ MPIプロセス数はsrc/gkvp_header.f90と整合するように MPI_procs = nprocw*nprocz*nprocv*nprocm*nprocs と設定。
- ✓ SX-Aurora TSUBASAでは、2021年3月現在、フラットMPIの方が性能が高いので、 venode = MPI_procs / 8 (整数)と設定。

4.ジョブ投入スクリプトshootにディレクトリの設定をする。

5. コンパイルし、計算を実行

コンパイルする。

\$ make

\$ cd gkvp-f0.62/run/		
\$ make clean	#	省略可能

計算を実行する。以下の形式でshootスクリプトを利用することでステップジョブ実行される。 ./shoot START_NUM END_NUM (JOB_ID) 例) シングルジョブ投入(*.001) ./shoot 1 1 シングルジョブ投入(*.002) ./shoot 2 2

ステップジョブ投入(*.003 - *.005) ./shoot 3 5 継続ステップジョブ投入 ./shoot 6 7 11223 (*.005まで計算するジョブJOB_ID=11223がキュー中にあり、 それに続けて*.006 - *.007のジョブを実行させようとした。)

今回はひとまず、1回分のシングルジョブを投入してみましょう。

\$./shoot 1 1

※投入したジョブの処理状況の確認 \$ qstat

5. コンパイルし、計算を実行

正常に計算が実行されれば、run/shootで設定した出力ディレクトリ (例: DIR=/data/lng/(ユーザーID)/gkv_training/linear_test/) に以下のデータが書き出される。

log/ 計算ログ

- cnt/ 継続計算用バイナリデータ
- fxv/ 分布関数バイナリデータ(いくつかの磁力線方向座標位置で)
- phi/ ポテンシャル、流体モーメント、エントロピーバランスに関するバイナリデータ
- hst/ アスキー形式の標準出力
- その他:実行環境バックアップのためのコピー

Appendix A. GKVの出力データー覧 にまとめた。GKV Manualにも同様の記載あり。 さらに詳細は、ソースコード src/gkvp_out.f90 を参照。

6. 出力データを解析する。

出力データを解析するには、

6-a) 自力で何とかする。

- GKVの出力データは一覧にまとめてあるので、後は適当にポスト処理する。
- アスキー形式の標準出力くらいなら簡単。
- MPI領域分割されたバイナリデータを読み込むのは結構手間。

※アスキー形式の標準出力についていろいろとプロットしてみましょう。

コードのオープン化にあたり、ポスト処理ツールとして以下の3つを提供。

6-b) hst/のアスキー標準出力を一括でPDF化するためのスクリプト fig_stdout
6-c) phi/などのバイナリデータ解析のためのFortran版ポスト処理プログラム diag (割愛)
6-d) バイナリデータ解析のためのPython版ポスト処理プログラム diag_python
※ fig_stdout を実行してみましょう。
※ diag_pythonを実行してみましょう。

6-a). hst/のアスキー標準出力をプロットする。

6-b) hst/のアスキー標準出力を一括でPDF化するためのスクリプト fig_stdout

LaTeXを利用するために、[2] Visualization Processing Server にログイン。

gkvp-f0.62/extra_tools/fig_stdout_f0.62.tar.gz をGKV出力データのある ディレクトリ(例: DIR=/data/lng/(ユーザーID)/gkv_training/linear_test/)に 展開する。

\$ cd gkvp-f0.62/extra_tools/ \$ tar xzvf fig_stdout_f0.62.tar.gz \$ mv fig_stdout_f0.62/ /data/lng/(ユーザーID)/gkv_training/linear_test/ 6-b) hst/のアスキー標準出力を一括でPDF化するためのスクリプト fig_stdout

展開したディレクトリ内は以下の構成:

<pre>fig_stdout_f0.62/</pre>	
<pre>make_pdf.sh</pre>	PDF作成シェルスクリプト
pdf/	PDFが格納されるディレクトリ
eps/	PDF作成に用いられたepsが格納されるディレクトリ
data/	eps作成に用いられた元データが格納されるディレクトリ
src/	gnuplot用スクリプト等

となっており、make_pdf.shスクリプトを実行

\$ cd /data/lng/(ユーザーID)/gkv_training/linear_test/fig_stdout_f0.62/

\$./make_pdf.sh clean # 省略可能

\$./make_pdf.sh

すると、一覧のPDF(fig_stdout_f0.62/pdf/fig.pdf)やeps、元データが格納される。

※必ずしも図のスケール等が見やすいとは限らない。

※プラズマシミュレータのgnuplotは通常バージョン4.6.2ですが、下記パスにあるバージョン5.2.7も利用できます。 /system/apps/rhel7/lx/gnuplot/5.2.7/bin/gnuplot

線形計算出力例: fig_stdout/pdf/fig.pdfより抜粋

6-d) バイナリデータ解析のためのPython版ポスト処理プログラム diag_python

6ページの手順でダウンロードしてきた diag_python-f0.61_02.tar.gz をGKV出力 ディレクトリ(例: DIR=/data/lng/(ユーザーID)/gkv_training/linear_test/)に 展開する。

\$ tar xzvf diag_python-f0.61_02.tar.gz
\$ mv diag_python-f0.61_02/ /data/lng/(ユーザーID)/gkv_training/linear_test/

diag_python は、GKV出力NetCDFデータを読み込みポスト処理を行うPythonスクリプ ト群です。ユーザーがなじみのPython環境から呼び出して利用してもらえばよいですが、 ここでは可視化処理サーバにインストールされている Jupyter lab を利用してみましょう。

\$ cd /data/lng/(ユーザーID)/gkv_training/linear_test/diag_python-f0.61_02/
\$ jupyter lab

※ 上記コマンドで、可視化処理サーバ上でJupyter labサーバとブラウザ(Firefox)が立ち上がり、X Window経由で各自のPC上に表示されます。X経由に由来する処理遅延が気になる場合、Plasma SimulatorではNoMachineクライアントによるリモートデスクトップ 接続が推奨されています。

・ インストール方法 [PSホームページ - NoMachineクライアント] <u>https://www.ps.nifs.ac.jp/wordpress/?page_id=72</u>

・操作方法 [PSホームページ – 利用の手引き – 13.1節] https://www.ps.nifs.ac.jp/documents/2/ps-usersguide-v8.pdf

6-d) バイナリデータ解析のためのPython版ポスト処理プログラム diag_python

ۏ JupyterLab - Mozilla Firefox@vis1	– O X	基本操作
◯ JupyterLab × +		
$\leftarrow \rightarrow C' \hat{\omega}$ (i) localhost:8	3888/lab 90% ••• 🗢 🏠 🕪 😑	• main.ipynbを開く。
💭 File Edit View Run Kernel Tabs	Settings Help	 セルを選択し、[Shift] + [Enter]でセル
+ 🗈 ± C 🛛 Launcher	r 🗙 💌 main.ipynb 🗙	の内容を実行。
	K T T > Code > Python 3 O	• 宇行途山の変数など すべて記憶され
• data	import sys	
∎Q src	<pre>sys.path.append("./src/") import numpy as np</pre>	しいるので、もう一度初めからなり直し
📼 🖌 🔜 main.ipynb	<pre>import matplotlib.pyplot as plt from diag_rb import rb_open, rb_get_tri_filelist</pre>	たい場合は、上部タノから [Kernel] –
a main.py A main.py A main.py A main.py	<pre>from diag_geom import geom_set</pre>	[Restart Kernel and Clear All
M README.md	<pre>### Read NetCDF data phi.*.nc by xarray ### NC FROM="GKV"</pre>	Outputslを選択。
simple_example.ipynb	<pre>if NC_FROM=="diag":</pre>	
simple_example.py	<pre>xr_phi = rb_open('/post/data/phi.*.nc') xr_Al = rb_open('/post/data/Al.*.nc')</pre>	
*	<pre>xr_mom = rb_open('/post/data/mom.*.nc') xr_fxv = rb_open('/post/data/fxv.*.nc')</pre>	
	<pre>xr_cnt = rb_open('/post/data/cnt.*.nc') xr trn = rb open('/post/data/trn.*.nc')</pre>	
	<pre>tri_filelist = rb_get_tri_filelist('/post/data/tri.*.nc') elif NC FROM=="GKV"</pre>	※一つ目のセルは、NetCDFファイルのパスや
	<pre>xr_phi = rb_oper('/phi/gkvp.phi.*.nc') xr_Al = rb_oper('/phi/gkvp.Al * nc')</pre>	header, namelist, メトリックデータのパスを読み
	$xr_m e = rb_oper('/phi/gkvp.mom.*.nc') \leftarrow *.nc \nabla \mathcal{P} \mathcal{I} \mathcal{I}$	込み、各種形状データの初期設定を行う部分で
	xr_nt = rb_oper('/rx/gkp.nxnc') のバスを確認。	二字(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	<pre>tri_fileList = rb_get_tri_fileList('/pni/gkvp.tri.*.nc')</pre>	※2つ日以降のセルは行いたい解析に合わせて
	<pre>xr_tri_list=[] for file in tri_filelist:</pre>	
	<pre>xr_tri=rb_open(file + '.*.nc') xr_tri_list.append(xr_tri)</pre>	
0 s_ 1 @ Python 3 Idle	Mode: Command 🦁 Ln 1, Col 1 main.ipynb	28

6-d) バイナリデータ解析のためのPython版ポスト処理プログラム diag_python

<u>diag_pythonの構成について(simple_example.ipynbを例に)</u>

```
import sys
sys.path.append("./src/")
```

```
### Read NetCDF data phi.*.nc by xarray ###
from diag_rb import rb_open, rb_get_tri_filelist
xr_phi = rb_open('../phi/gkvp.phi.*.nc')
```

```
# Plot phi[y,x] at t[it], zz[iz]
from out_mominxy import phiinxy
it = 250
iz = 48
```


← diag_python/src/内のPythonスクリプト群をimportできる ようにパスを追加。

← NetCDFデータ gkvp.phi.*.nc を読み込み(xarray)。

← namelist等の情報を読み込み、配位データを作成。 例えば、磁気面平均などの計算に利用します。

← 行いたい解析に応じたモジュールから関数をimportし、実行。

左の例では、./src/out_mominxy.py内で定義される phiinxy 関数をimportしています。ある時刻 t[it] におけるある磁力線方 向座標位置 zz[iz] での静電ポテンシャルの垂直方向2次元分 布 phi(y,x) を計算します。 flag="display"や"savefig"は画像を表示したり、保存したりする オプションです。flag=Noneの場合は、x,y,phi(y,x)のデータを returnしますので、自分で好きに描画できます。

※ 詳しくはヘルプ help(phiinxy) を参照ください。

応用:非線形乱流シミュレーションの実行とデータ解析

線形計算から、非線形乱流シミュレーション用に物理パラメータを変更する。

&calct calc_type="nonlinear",	# 計算タイプを非線形に変更 run/gkvp_namelist
… &runlm e_limit = <mark>3600.d0</mark> , &end	# 計算実行の実時間[秒]を延ばす
 &nperi n_tht = 1, kymin = 0.05d0, m_j = 4, del_c = 0.d0, &end 	# 磁力線方向ボックスサイズをポロイダル角で±piに変更 # 磁力線ラベル方向ボックスサイズ ly = pi/kymin # 半径径方向ボックスサイズ lx = pi/kxmin kxmin = 2*pi*s_hat*kymin/m_j lxとlyがある程度近い値になるように変更

複数モード扱うように解像度・MPI数も変更。

応用:非線形乱流シミュレーションの実行とデータ解析

計算実行時間・MPI数に合わせて、sub.qも変更

#PBS -q small24VH #PBSgroup= 21224 #PBS -T necmpi #PBS -l elapstim_req= 01:05:00	<pre># queue name # resource group # necessary for MPI job # elapsed time limit</pre>	run/sub.q
‡PBS venode=8 ‡PBSvenum-lhost=8 ‡PBS -v OMP_NUM_THREADS=1	<pre># total number of VE # number of VE per a logical node # number of threads per MPI process</pre>	
1PI_procs=64	<pre># number of MPI processes (= venode*8 for -</pre>	flat MPI)

出力先ディレクトリも変更

DIR=/data/lng/maeyama/gkv_training/nonlinear_test/ #実行後のデータ出力ディレクトリ run/shoot

※今回の解像度設定例は、Benchmarks/内のITGae-nlケースに基づいています。今実習時間中に計算が終わらなくても、 後日、自分で計算した結果と、Benchmarks/内に入っている参考データが合うか確認してみると良いでしょう。なお、非線 形計算では計算誤差の蓄積などで時系列データの逐次的振舞いはベンチマークと一致しない可能性があります。31

※2023年3月現在、解像度を上げた場合のParallel NetCDF4出力が遅く、上記設定では計算 が完了しません。GKVの実装上の問題なのか、プラズマシミュレータ上でのParallel NetCDF4 の問題なのか、今後調査を進めていきます。

ひとまず、非線形計算を実行するには、9ページのNetCDF4出力の設定を、Fortranバイナリ 出力に戻して実行してください。

- この場合でも、hst/内のアスキーファイル出力は不変ですので、本資料26ページまでの手順は変わりません。
- cnt/, fxv/, phi/内の出力がFortranバイナリファイルになります。Fortran版diagを用いて読み込み、解析が可能です。(参照:第2回講習会資料 <u>http://www.p.phys.nagoya-u.ac.jp/gkv/document.html</u> > gkv_training_diag_171215.pdf)
- また、diag内の out_netcdf モジュール内、phiinnetcdf, Alinnetcdf, mominnetcdf, fxvinnetcdf, cntinnetcdf, trninnetcdf, triinnetcdf サブルーチンをcallすることで、Fortranバイ ナリファイルをNetCDF4ファイルに変換できます。
- 変換したNetCDF4ファイルのパスを指定することで、diag_pythonの利用も可能です。

非線形計算出力例: fig_stdout/pdf/fig.pdfより抜粋

まとめ

GKVの利用方法をハンズオン形式で説明した。

<u>要約</u>

GKVの物理モデル・数値モデル を踏まえた上で、 実験→GKVパラメータ換算 MHD平衡データの加工 の準備をしてから、 解像度、MPIの設定 src/gkvp header.f90 run/gkvp namelist 物理・数値パラメータの設定 run/sub.q MPI・OpenMPの設定 平衡データ・出力ディレクトリの設定 run/shoot の後にコンパイル(make)、実行(./shoot START NUM END NUM)。 hst/のアスキー標準出力を一括でPDF化するためのスクリプト fig stdout phi/などのバイナリデータ解析用ポスト処理プログラム Fortran版 diag または Python版 diag python などを利用して、結果を解析する。

発展課題

余力がある人は、

- どんな出力データがあるか、Appendix A を確認しておきましょう。
- イオンの熱輸送フラックスの時間発展もプロットしてみましょう。
- イオン温度勾配を変えて、線形成長率の変化を調べてみましょう。
- 磁力線方向ボックスサイズを変えてみましょう。解像度も変わることに注意。
- MPIやOpenMPの並列数を変えて、処理時間のスケーラビリティを確認してみましょう。
- 非線形シミュレーションにおいて、準定常状態で時間平均した静電ポテンシャル揺動のky波数スペクトルを作ってみましょう。

発展課題

 もしシステムがNetCDF4対応していない場合は、Fortran版ポスト処理プログラム diag を利用することになります。(参照:第2回講習会資料 <u>http://www.p.phys.nagoya-</u> <u>u.ac.jp/gkv/document.html</u> > gkv_training_diag_171215.pdf)

Appendix A. GKVの出力データー覧

cnt/*cnt* fxv/*fxv* phi/*phi*, *Al*, *mom*, *trn*, (非線形の場合のみ *tri*) hst/*bln*, *ges*, *gem*, *qes*, *qem*, *wes*, *wem*, *eng*, *men*, *dtc*, *mtr*, *mtf* (線形の場合のみ *frq*, *dsp*) log/*log*

cnt/gkvp.(MPIランク6桁).cnt.(ラン数3桁)

- ファイル形式: バイナリ
- 出力間隔: ランの終了時
- 出力を行うMPIランク: すべて
- 総ファイル数: nprocw*nprocz*nprocv*nprocm*nprocs * (総ラン数)
- GKVコード中の出力ユニット: ocnt
- 格納データ:

time, ff(-nx:nx,0:ny,-nz:nz-1,1:2*nv,0:nm)

ここで、

time: 時刻(倍精度実数)

ff: 揺動ジャイロ中心分布関数(倍精度複素数)

【説明】

揺動量は、磁気面座標x,磁力線ラベル座標y,磁力線方向座標zにおいて、(x,y)方向にフーリエ級数展開され、

$$\tilde{f}_{s}(x, y, z, v_{\parallel}, \mu) = \sum_{k_{x}} \sum_{k_{y}} \tilde{f}_{sk}(z, v_{\parallel}, \mu) e^{i(k_{x}x + k_{y}y)}$$

*.cnt.*には、

$$\tilde{f}_{sk} = \frac{\rho_{ref}}{L_{ref}} \frac{n_s}{v_{ts}^3} \bar{f}_{sk}$$

として規格化された分布関数 $\overline{f}_{sk}(z, v_{\parallel}, \mu)$ が格納されている。

fxv/gkvp.(MPIランク6桁).(粒子種1桁).fxv.(ラン数3桁)

- ファイル形式:バイナリ
- 出力間隔: dtout_fxv
- 出力を行うMPIランク: すべて
- 総ファイル数: nprocw*nprocz*nprocv*nprocm*nprocs * (総ラン数)
- GKVコード中の出力ユニット: ofxv
- 格納データ:

```
time, ff(-nx:nx,0:ny,1:2*nv,0:nm)
```

ここで、

time: 時刻(倍精度実数)

ff: 揺動ジャイロ中心分布関数(倍精度複素数) at iz=-nz(z方向MPIランクrankzに依存して、書き出 す磁力線方向位置は異なる。)

【説明】

*.cnt.*の項を参照。

phi/gkvp.(MPIランク6桁).0.phi.(ラン数3桁)

- ファイル形式: バイナリ
- 出力間隔: dtout_ptn
- 出力を行うMPIランク: ranks == 0 .and. vel_rank == 0
- 総ファイル数: nprocw*nprocz * (総ラン数)
- GKVコード中の出力ユニット: ophi
- 格納データ:

```
time, phi(-nx:nx,0:ny,-nz:nz-1)
```

ここで、

time: 時刻(倍精度実数)

phi: 揺動静電ポテンシャル(倍精度複素数)

【説明】

揺動量は、磁気面座標x,磁力線ラベル座標y,磁力線方向座標zにおいて、(x,y)方向にフーリエ級数展開され、

$$\tilde{\phi}(x, y, z) = \sum_{k_x} \sum_{k_y} \tilde{\phi}_k(z) e^{i(k_x x + k_y y)}$$

*.phi.*には、

$$\tilde{\phi}_{k} = \frac{\rho_{ref}}{L_{ref}} \frac{T_{ref}}{e_{ref}} \bar{\phi}_{k}$$

として規格化された静電ポテンシャル $\bar{\phi}_k(z)$ が格納されている。

phi/gkvp.(MPIランク6桁).0.Al.(ラン数3桁)

- ファイル形式: バイナリ
- 出力間隔: dtout_ptn
- 出力を行うMPIランク: ranks == 0 .and. vel_rank == 0
- 総ファイル数: nprocw*nprocz * (総ラン数)
- GKVコード中の出力ユニット: oAl
- 格納データ:

```
time, Al(-nx:nx,0:ny,-nz:nz-1)
```

ここで、

time: 時刻(倍精度実数)

Al: 揺動ベクトルポテンシャル(倍精度複素数)

【説明】

揺動量は、磁気面座標x,磁力線ラベル座標y,磁力線方向座標zにおいて、(x,y)方向にフーリエ級数展開され、

$$\tilde{A}_{\parallel}(x,y,z) = \sum_{k_x} \sum_{k_y} \tilde{A}_{\parallel k}(z) e^{i(k_x x + k_y y)}$$

*.Al.*には、

$$\tilde{A}_{\parallel \mathbf{k}} = \frac{\rho_{ref}}{L_{ref}} \rho_{ref} B_{ref} \bar{A}_{\parallel \mathbf{k}}$$

として規格化された静電ポテンシャルĀ_{llk}(z)が格納されている。

phi/gkvp.(MPIランク6桁).(粒子種1桁).mom.(ラン数3桁)

- ファイル形式: バイナリ
- 出力間隔: dtout_ptn
- 出力を行うMPIランク: vel_rank == 0
- 総ファイル数: nprocw*nprocz*nprocs * (総ラン数)
- GKVコード中の出力ユニット: omom
- 格納データ:

time, mom(-nx:nx,0:ny,-nz:nz-1,0:nmom-1)

ここで、

time: 時刻(倍精度実数)
mom: 揺動流体モーメント(倍精度複素数)。現状、nmom=6として以下の6つの流体量を順に出力。
$$\tilde{n}_{sk} = \int dv^3 J_{0sk}\tilde{f}_{sk}, \quad \tilde{u}_{\parallel sk} = \int dv^3 v_{\parallel} J_{0sk}\tilde{f}_{sk}, \quad \tilde{p}_{\parallel sk} = \int dv^3 \frac{v_{\parallel}^2}{2} J_{0sk}\tilde{f}_{sk},$$

 $\tilde{p}_{\perp sk} = \int dv^3 \mu B J_{0sk}\tilde{f}_{sk}, \tilde{q}_{\parallel\parallel sk} = \int dv^3 v_{\parallel} \frac{v_{\parallel}^2}{2} J_{0sk}\tilde{f}_{sk}, \tilde{q}_{\parallel\perp sk} = \int dv^3 v_{\parallel} \mu B J_{0sk}\tilde{f}_{sk}$

【説明】 規格化は

$$\tilde{n}_{sk} = \frac{\rho_{ref}}{L_{ref}} n_{ref} \bar{n}_{sk}, \qquad \tilde{u}_{\parallel sk} = \frac{\rho_{ref}}{L_{ref}} n_{ref} v_{ref} \bar{u}_{\parallel sk}, \qquad \tilde{p}_{\parallel sk} = \frac{\rho_{ref}}{L_{ref}} n_{ref} T_{ref} \bar{p}_{\parallel sk},$$
$$\tilde{p}_{\perp sk} = \frac{\rho_{ref}}{L_{ref}} n_{ref} T_{ref} \bar{p}_{\perp sk}, \qquad \tilde{q}_{\parallel \parallel sk} = \frac{\rho_{ref}}{L_{ref}} n_{ref} T_{ref} \bar{q}_{\parallel \parallel sk}, \qquad \tilde{q}_{\parallel \perp sk} = \frac{\rho_{ref}}{L_{ref}} n_{ref} T_{ref} \bar{q}_{\parallel \parallel sk},$$

phi/gkvp.(MPIランク6桁).(粒子種1桁).trn.(ラン数3桁)

- ファイル形式: バイナリ
- 出力間隔: dtout_eng
- 出力を行うMPIランク: zsp_rank == 0 .and. vel_rank == 0
- 総ファイル数: nprocw*nprocs * (総ラン数)
- GKVコード中の出力ユニット: otrn
- 格納データ:

time, S_{sk} , W_{Ek} , W_{Mk} , R_{sEk} , R_{sMk} , I_{sEk} , I_{sMk} , D_{sk} , Γ_{sEk} , Γ_{sMk} , Q_{sEk} , Q_{sMk} $\Box \Box \Box$

time: 時刻(倍精度実数)

他はすべてサイズ(-nx:nx,0:ny)の倍精度実数配列で、左から順に、ジャイロ中心揺動エントロピー、静電揺 動エネルギー(イオン分極項含む)、磁場揺動エネルギー、波粒子相互作用(W_E→S_s)、波粒子相互作用 (W_M→S_s)、ExB流による非線形エントロピー伝達、磁場揺動による非線形エントロピー伝達、衝突散逸、ExB 流による粒子輸送フラックス、磁場揺動による粒子輸送フラックス、ExB流によるエネルギー輸送フラックス、磁 場揺動によるエネルギー輸送フラックス

【説明】

補足1.エントロピーバランス方程式を参照。また、規格化は以下とする。

 $S_{sk} = \delta_{ref}^2 n_{ref} \overline{T_{ref}} \overline{S_{sk}}, \qquad W_{Ek} = \delta_{ref}^2 n_{ref} \overline{T_{ref}} \overline{W}_{Ek}, \qquad W_{Mk} = \delta_{ref}^2 n_{ref} \overline{T_{ref}} \overline{W}_{Mk}, \\ R_{sk} = \delta_{ref}^2 \frac{v_{ref}}{L_{ref}} n_{ref} \overline{T_{ref}} \overline{R}_{sk}, \qquad I_{sk} = \delta_{ref}^2 \frac{v_{ref}}{L_{ref}} n_{ref} \overline{T_{ref}} \overline{I}_{sk}, \qquad D_{sk} = \delta_{ref}^2 \frac{v_{ref}}{L_{ref}} n_{ref} \overline{T_{ref}} \overline{D}_{sk}, \\ \Gamma_{sk} = \delta_{ref}^2 n_{ref} v_{ref} \overline{\Gamma}_{sk}, \qquad Q_{sk} = \delta_{ref}^2 n_{ref} \overline{T_{ref}} v_{ref} \overline{Q}_{sk} \\ ($ **シ** $\overline{K} + \overline{K}) \overline{K} + \overline{K} + \overline{K} + \overline{K} + \overline{K}) \overline{K} + \overline{K} +$

phi/gkvp.s(粒子種1桁)mx(mxt4桁)my(myt4桁).tri.(ラン数3桁)

ファイル形式:バイナリ

※mxt,mytはnamelistで指定したもの。

- 出力間隔: dtout_ptn (calc_type=="nonlinear".and.num_triad_diag>0)
- 出力を行うMPIランク: rank == 0
- 総ファイル数: nprocs * num_triad_diag * (総ラン数)
- GKVコード中の出力ユニット: otri
- 格納データ:

time, $J_{SEk}^{p,q}, J_{SEn}^{q,k}, J_{SEq}^{k,p}, J_{SMk}^{p,q}, J_{SMn}^{q,k}, J_{SMn}^{k,p}$

ここで、

time: 時刻(倍精度実数)

他はすべてサイズ(-nx:nx,-global_ny:global_ny)の倍精度実数配列で、モードk=(mxt,myt)に固定して、 p=(px,py)の関数として表したもの(qは-k-pで求まる)。

先の3つは、ExB流の非線形性によるp,qからkへのエントロピー伝達とそのcyclicな入れ替え、後の3つは、磁場揺動の非線形性によるp,qからkへのエントロピー伝達とそのcyclicな入れ替え。

【説明】

補足2. 三波結合伝達関数を参照。

規格化は、*.trn.*の非線形エントロピー伝達と同様に、 $J_{sk}^{p,q} = \delta_{ref}^2 \frac{v_{ref}}{L_{ref}} n_{ref} \overline{J}_{sk}^{p,q}$,

hst/gkvp.bln.(粒子種1桁).(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rank == 0
- 総ファイル数: nprocs * (総ラン数)
- GKVコード中の出力ユニット: obln
- 格納データ:

time,
$$S_s$$
, W_E , W_M , R_{sE} , R_{sM} , I_{sE} , I_{sM} , D_s , $\frac{T_s \Gamma_{sE}}{L_{ps}}$, $\frac{T_s \Gamma_{sM}}{L_{ps}}$, $\frac{\Theta_{sE}}{L_{Ts}}$, $\frac{\Theta_{sM}}{L_{Ts}}$

ここで、

time: 時刻(実数)

S_sからD_sまではサイズ(2)の実数配列(配列要素1,2はそれぞれky/=0成分とky==0成分)で、左から順に、 ジャイロ中心揺動エントロピー、静電揺動エネルギー(イオン分極項含む)、磁場揺動エネルギー、波粒子相互 作用(W_E→S_s)、波粒子相互作用(W_M→S_s)、ExB流による非線形エントロピー伝達、磁場揺動による非線形エ ントロピー伝達、衝突散逸。残り4つは実数で、エントロピーバランス方程式における、粒子輸送項(ExB流、磁 場揺動)、熱輸送項(ExB流、磁場揺動)

【説明】

*.trn.*の項を参照。

hst/gkvp.ges.(粒子種1桁).(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rank == 0
- 総ファイル数: nprocs * (総ラン数)
- GKVコード中の出力ユニット: oges
- 格納データ:

time, Γ_{sE} , $\Gamma_{sEk_{y}}$ (0:global_ny)

ここで、

time: 時刻(実数)

Γ_{sE}: ExB流による粒子輸送フラックス(実数)

 Γ_{SEk_v} : ExB流による粒子輸送フラックスのy方向波数スペクトル(実数配列)

【説明】

ExB流による粒子輸送フラックスは以下で与えられる。

$$\Gamma_{sEk_y} = \sum_{k_x} \Gamma_{sEk}, \qquad \Gamma_{sEk} = \operatorname{Re}\left[\left(-\frac{ik_y\phi_k}{c_b}n_{sk}^*\right)\right]$$

$$\Gamma_{sEk_y} = \delta_{ref}^2 n_{ref} v_{ref} \bar{\Gamma}_{sEk_y}$$

hst/gkvp.gem.(粒子種1桁).(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rank == 0
- 総ファイル数: nprocs * (総ラン数)
- GKVコード中の出力ユニット: ogem
- 格納データ:

time, Γ_{sM} , $\Gamma_{sMk_{y}}$ (0:global_ny)

ここで、

time: 時刻(実数)

Γ_{SM}:磁場揺動による粒子輸送フラックス(実数)

 $\Gamma_{SMk_{y}}$:磁場揺動による粒子輸送フラックスのy方向波数スペクトル(実数配列)

【説明】

磁場揺動による粒子輸送フラックスは以下で与えられる。

$$\Gamma_{SMk_{y}} = \sum_{k_{x}} \Gamma_{SMk}, \qquad \Gamma_{SMk} = \operatorname{Re}\left[\left\langle \frac{ik_{y}A_{\parallel k}}{c_{b}}u_{\parallel Sk}^{*}\right\rangle \right]$$

$$\Gamma_{sMk_y} = \delta_{ref}^2 n_{ref} v_{ref} \bar{\Gamma}_{sMk_y}$$

hst/gkvp.qes.(粒子種1桁).(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rank == 0
- 総ファイル数: nprocs * (総ラン数)
- GKVコード中の出力ユニット: oqes
- 格納データ:

time, Q_{sE} , $Q_{sEk_{y}}$ (0:global_ny)

ここで、

time: 時刻(実数)

Q_{SE}: ExB流によるエネルギー輸送フラックス(実数)

 Q_{sEk_v} : ExB流によるエネルギー輸送フラックスのy方向波数スペクトル(実数配列)

【説明】

ExB流によるエネルギー輸送フラックスは以下で与えられる。

$$Q_{sEk_y} = \sum_{k_x} Q_{sEk}$$
, $Q_{sEk} = \operatorname{Re}\left[\left(-\frac{ik_y\phi_k}{c_b}p_{sk}^*\right)\right]$

$$Q_{sEk_y} = \delta_{ref}^2 n_{ref} v_{ref} \bar{Q}_{sEk_y}$$

hst/gkvp.qem.(粒子種1桁).(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rank == 0
- 総ファイル数: nprocs * (総ラン数)
- GKVコード中の出力ユニット: oqem
- 格納データ:

time, Q_{sM} , Q_{sMk_v} (0:global_ny)

ここで、

time: 時刻(実数)

Q_{SM}:磁場揺動によるエネルギー輸送フラックス(実数)

 Q_{SMk_v} :磁場揺動によるエネルギー輸送フラックスのy方向波数スペクトル(実数配列)

【説明】

磁場揺動によるエネルギー輸送フラックスは以下で与えられる。

$$Q_{sMk_y} = \sum_{k_x} Q_{sMk}, \qquad Q_{sMk} = \operatorname{Re}\left[\left\langle\frac{ik_y A_{\parallel k}}{c_b}q_{\parallel sk}^*\right\rangle\right]$$

$$Q_{sMk_y} = \delta_{ref}^2 n_{ref} v_{ref} \bar{Q}_{sMk_y}$$

hst/gkvp.wes.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rankg == 0
- 総ファイル数: (総ラン数)
- GKVコード中の出力ユニット: owes
- 格納データ:

time, W_E , W_{Ek_v} (0:global_ny)

ここで、

time: 時刻(実数)

 W_E :静電揺動エネルギー(実数) W_{Ek_v} :静電揺動エネルギーのy方向波数スペクトル(実数配列)

【説明】

静電揺動エネルギー(分極項含む)は以下で与えられる

$$W_{Ek_{y}} = \sum_{k_{x}} W_{Ek}, \qquad W_{Ek} = \left(\left[\varepsilon_{0} k_{\perp}^{2} + \sum_{s} \frac{e_{s}^{2} n_{s}}{T_{s}} (1 - \Gamma_{0sk}) \right] \frac{|\phi_{k}|^{2}}{2} \right)$$

$$W_{Ek_y} = \delta_{ref}^2 n_{ref} T_{ref} \overline{W}_{Ek_y}$$

hst/gkvp.wem.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rankg == 0
- 総ファイル数: (総ラン数)
- GKVコード中の出力ユニット: owem
- 格納データ: time, W_M, W_{Mky}(0:global_ny)
- ここで、

time: 時刻(実数) W_M : 磁場揺動エネルギー(実数) W_{Mk_v} : 磁場揺動エネルギーのy方向波数スペクトル(実数配列)

【説明】

磁場揺動エネルギーは以下で与えられる。

$$W_{Mk_y} = \sum_{k_x} W_{Mk}$$
, $W_{Mk} = \left\langle \frac{k_{\perp}^2}{\mu_0} \frac{|A_{||k|}|^2}{2} \right\rangle$

$$W_{Mk_y} = \delta_{ref}^2 n_{ref} \overline{T}_{ref} \overline{W}_{Mk_y}$$

hst/gkvp.eng.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rankg == 0
- 総ファイル数: (総ラン数)
- GKVコード中の出力ユニット: oeng
- 格納データ:

time, $\sum_{k_x,k_y} \langle |\tilde{\phi}_k|^2 \rangle$, $\sum_{k_x} \langle |\tilde{\phi}_k|^2 \rangle$ (0:global_ny)

ここで、

time: 時刻(実数) $\sum_{k_x,k_y} \langle \left| \tilde{\phi}_k \right|^2 \rangle$: 揺動静電ポテンシャルニ乗振幅(実数) $\sum_{k_x} \langle \left| \tilde{\phi}_k \right|^2 \rangle$: 揺動静電ポテンシャルニ乗振幅のy方向波数スペクトル(実数配列)

【説明】

規格化は、
$$\tilde{\phi}_{k} = \frac{\rho_{ref} T_{ref}}{L_{ref} e_{ref}} \bar{\phi}_{k}$$

hst/gkvp.men.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rankg == 0
- 総ファイル数: (総ラン数)
- GKVコード中の出力ユニット: omen
- 格納データ:

time, $\sum_{k_x,k_y} \langle |\tilde{A}_{\parallel k}|^2 \rangle$, $\sum_{k_x} \langle |\tilde{A}_{\parallel k}|^2 \rangle$ (0:global_ny)

ここで、

time: 時刻(実数) $\sum_{k_x,k_y} \langle |\tilde{A}_{\parallel k}|^2 \rangle$: 揺動ベクトルポテンシャルニ乗振幅(実数) $\sum_{k_x} \langle |\tilde{A}_{\parallel k}|^2 \rangle$: 揺動ベクトルポテンシャルニ乗振幅のy方向波数スペクトル(実数配列)

【説明】

規格化は、 $\tilde{A}_{\parallel k} = \frac{\rho_{ref}}{L_{ref}} \rho_{ref} B_{ref} \bar{A}_{\parallel k}$

hst/gkvp.dtc.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng
- 出力を行うMPIランク: rankg == 0
- 総ファイル数: (総ラン数)
- GKVコード中の出力ユニット: odtc
- 格納データ:

time, dt, dt_limit, dt_nl

ここで、

time: 時刻(実数)

dt:時間刻み幅(実数)

dt_limit:時間刻み幅の見積もり(実数)

dt_nl: 非線形移流速度から算出した数値安定な時間刻み幅の見積もり(実数)

【説明】

省略。

hst/gkvp.mtr.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: ランの開始時
- 出力を行うMPIランク: rankg == 0
- 総ファイル数: (総ラン数)
- GKVコード中の出力ユニット: omtr
- 格納データ:

$z, \theta(\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{t}}}}\texttt{\texttt{\texttt{t}}}}}|t\phi), B, \frac{\partial B}{\partial x}, \frac{\partial B}{\partial y}, \frac{\partial B}{\partial z}, g^{xx}, g^{xy}, g^{xz}, g^{yy}, g^{yz}, g^{zz}, \sqrt{g}$

ここで、データはすべて実数で、左から順に 磁力線方向座標、ポロイダル角(ただしequib_type==vmecの時はトロイダル角)、磁場強度、磁場強度の微 分3つ、メトリックテンソルの要素6つ、Jacobian。

【説明】

省略。

hst/gkvp.frq.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: dtout_eng (calc_type == linear .or. calc_type == lin_freq)
- 出力を行うMPIランク: rankg == 0
- 総ファイル数: (総ラン数)
- GKVコード中の出力ユニット: ofrq
- 格納データ:

time, omega(1:global_ny,-nxfrq:nxfrq)

ここで、

time: 時刻(実数)

omega:線形複素周波数(複素数)[=(実周波数,成長率)]のkx,ky方向波数スペクトル

【説明】

 $\tilde{\phi}_{k}(t) = \phi_{0}e^{-i\omega t} = \phi_{0}e^{-i\omega_{r}t}e^{\gamma t}$ の依存性を仮定して、

$$\omega = \omega_r + i\gamma = \frac{\ln\left[\frac{\tilde{\phi}_k(t + \Delta t)}{\tilde{\phi}_k(t)}\right]}{-i\Delta t}$$

により、線形複素周波数の時々刻々の見積もりを得る。

複数のkx,kyモードについてω_rとγの時間発展を出力しているので、どの列にどのモードの値が出力されているかは ファイル先頭のコメント行を参照。

hst/gkvp.dsp.(ラン数3桁)

- ファイル形式: アスキー
- ・ 出力間隔: ランの終了時 (calc_type == linear .or. calc_type == lin_freq)
- 出力を行うMPIランク: rankg == 0
- 総ファイル数:(総ラン数)
- GKVコード中の出力ユニット: odsp
- 格納データ:

kx, ky, omega, diff, 1-ineq

ここで、

kx: x方向波数(実数)

ky: y方向波数(実数)

omega: 線形複素周波数(複素数)[=(実周波数,成長率)]

diff: 単位時間当たり相対誤差による収束判定([omega(t)-omega(t-dt)]/dt)/omega(t) (複素数) 1-ineq: Schwartzの不等式で評価した収束誤差(実数)

【説明】

 $\tilde{\phi}_{k}(t) = \phi_{0}e^{-i\omega t} = \phi_{0}e^{-i\omega_{r}t}e^{\gamma t}$ の依存性を仮定して、

$$\omega = \omega_r + i\gamma = \frac{\ln\left[\frac{\tilde{\phi}_k(t + \Delta t)}{\tilde{\phi}_k(t)}\right]}{-i\Delta t}$$

により、線形複素周波数の時々刻々の見積もりを得る。

ランの終了時に、周波数・成長率のkx,ky依存性を出力する。まだ周波数・成長率が十分収束していなさそうな場合は コメントとして書き出す。

log/gkvp.(MPIランク6桁).(粒子種1桁).log.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: 随時
- 出力を行うMPIランク: すべて
- 総ファイル数: nprocw*nprocz*nprocv*nprocm*nprocs * (総ラン数)
- GKVコード中の出力ユニット: olog
- 格納データ:
 シミュレーションに関するログ

【説明】 省略。

hst/gkvp.mtf.(ラン数3桁)

- ファイル形式: アスキー
- 出力間隔: ランの開始時
- 出力を行うMPIランク: rankg == 0
- 総ファイル数:(総ラン数)
- GKVコード中の出力ユニット: omtf
- 格納データ:

$$z, \theta(\texttt{\texttt{stat}}), B, \frac{\partial B}{\partial \rho}, \frac{\partial B}{\partial \theta}, \frac{\partial B}{\partial \zeta}, g^{\rho\rho}, g^{\rho\theta}, g^{\rho\zeta}, g^{\theta\theta}, g^{\theta\zeta}, g^{\zeta\zeta}, \sqrt{g_{\rho\theta\zeta}}$$

ここで、データはすべて実数で、左から順に 磁力線方向座標、ポロイダル角(ただしequib_type==vmecの時はトロイダル角)、磁場強度、磁場強度の微 分3つ、メトリックテンソルの要素6つ、Jacobian。

【説明】

GKVの沿磁力線座標系(x, y, z)と磁束座標系(ρ, θ, ζ)は

$$x = c_{x}(\rho - \rho_{0}), \qquad y = c_{y}[q(\rho)\theta - \zeta] - V_{E}(\rho)t, \qquad z = \theta - \frac{\gamma_{E}}{\hat{s}}t$$

$$c_{y} = \frac{c_{x}\rho_{0}}{q_{0}}, q(\rho) = q_{0} + \frac{q_{0}\hat{s}}{\rho_{0}}(\rho - \rho_{0}), V_{E}(\rho) = V_{E0} + \gamma_{E}c_{x}(\rho - \rho_{0})$$

の関係があるので、磁束座標系のメトリック(θについて周期的)を用いて、沿磁力線座標系のメトリック(zについて非 周期的)を算出できる。

Appendix B. その他補足

補足1. エントロピーバランス方程式

各粒子種、各モードについてのエントロピーバランスは以下で与えられる[Maeyama'14PoP]。

$$\frac{dS_{sk}}{dt} = \frac{T_s \Gamma_{sk}}{L_{ps}} + \frac{\Theta_{sk}}{L_{Ts}} + I_{sk} + R_{sk} + E_{sk} + D_{sk}, \qquad \frac{dW_{Ek}}{dt} = -R_{sEk}, \qquad \frac{dW_{Mk}}{dt} = -R_{sMk}$$
ここで、

$$S_{sk} = \left(\int dv^3 \frac{T_s |f_{sk}|^2}{2F_{sM}}\right), \qquad W_{Ek} = \left(\left[\varepsilon_0 k_{\perp}^2 + \sum_s \frac{e_s^2 n_s}{T_s} (1 - \Gamma_{0sk})\right] \frac{|\phi_k|^2}{2}\right), \qquad W_{Mk} = \left(\frac{k_{\perp}^2}{\mu_0} \frac{|A_{\parallel k}|^2}{2}\right),$$

$$\Gamma_{sk} = \Gamma_{sEk} + \Gamma_{sMk} = \operatorname{Re}\left[\left(-\frac{ik_y \phi_k}{c_b} n_{sk}^* + \frac{ik_y A_{\parallel k}}{c_b} u_{\parallel sk}^*\right)\right], \qquad \Theta_{sk} = Q_{sk} - \frac{5}{2}T_s \Gamma_{sk}$$

$$Q_{sk} = Q_{sEk} + Q_{sMk} = \operatorname{Re}\left[\left(-\frac{ik_y \phi_k}{c_b} p_{sk}^* + \frac{ik_y A_{\parallel k}}{c_b} q_{\parallel sk}^*\right)\right], \qquad \Theta_{sk} = R_{sEk} + I_{sMk} = \operatorname{Re}\left[\left(-\frac{k_y \phi_k}{c_b} n_{sk}^* + \frac{ik_y A_{\parallel k}}{c_b} q_{\parallel sk}^*\right)\right],$$

$$I_{sk} = I_{sEk} + I_{sMk} = \operatorname{Re}\left[\left(-\sum_{k'} \sum_{k''} \delta_{k'+k'',k} \left\langle \int dv^3 \frac{T_s g_{sk}^*}{F_{sM}} \left\{ \frac{J_{0sk'}(\phi_{k'} - v_{\parallel}A_{\parallel k'})}{c_b} , g_{sk''} \right\}_{\perp}\right)\right],$$

$$R_{sk} = R_{sEk} + R_{sMk} = \operatorname{Re}\left[\left(-\phi_k^* \frac{\partial e_s n_{sk}}{\partial t} - e_s u_{\parallel sk}^* \frac{\partial A_{\parallel k}}{\partial t}\right)\right], \qquad E_{sk} = \operatorname{Re}\left[-\left\langle \int dv^3 v_{\parallel} \nabla_{\parallel} \frac{T_s |g_{sk}|^2}{2F_{sM}} \right\rangle\right],$$

$$D_{sk} = \operatorname{Re}\left[\left(\int dv^3 \frac{T_s g_{sk}}{F_{sM}} C_{sk}\right)\right], \qquad g_{sk} = f_{sk} + \frac{e_{sJosk} \phi_k}{T_s} F_{sM}, \qquad p_{sk} = p_{\parallel sk} + p_{\perp sk}, \qquad q_{\parallel sk} = q_{\parallel \parallel sk} + q_{\parallel \perp sk}\right)\right],$$

62

補足2. 三波結合伝達関数

補足1. エントロピーバランス方程式で説明した非線形エントロピー伝達 I_{sk} は三波結合伝達関数 $J_{sk}^{p,q}$ を用いて、

$$I_{sk} = \sum_{p} \sum_{q} J_{sk}^{p,q}$$
ここで、 $\chi_{sk} = J_{0sk} (\tilde{\phi}_k - v_{\parallel} \tilde{A}_{\parallel k}), g_{sk} = f_{sk} + \frac{e_s F_{sM}}{T_s} J_{0sk} \tilde{\phi}_k$ を用いて、

$$J_{sk}^{p,q} = J_{sEk}^{-p,q} + J_{sMk}^{-p,q} = \delta_{k+p+q,0} \frac{\mathbf{b} \cdot \mathbf{p} \times \mathbf{q}}{2B} \operatorname{Re} \left[\left| \int dv^3 \left(\chi_{sp} g_{sq} - \chi_{sq} g_{sp} \right) \frac{T_s g_{sk}}{F_{sM}} \right| \right]$$

補足3. GKVの積分

磁気面平均

$$\langle \tilde{\phi}(x,y,z) \rangle = \sum_{k_x} \left\langle \tilde{\phi}_{k_x,k_y=0}(z) \right\rangle e^{ik_x x}, \qquad \left\langle \tilde{\phi}_{k_x,k_y=0}(z) \right\rangle = \frac{\int_{-\pi}^{\pi} dz \sqrt{g} \tilde{\phi}_{k_x,k_y=0}(z)}{\int_{-\pi}^{\pi} dz \sqrt{g}}$$

体積平均

$$\int dx^3 \left| \tilde{\phi}(x, y, z) \right|^2 = \sum_{k_x} \sum_{k_y} \left\langle \left| \tilde{\phi}_{k}(z) \right|^2 \right\rangle$$

速度空間積分

$$\int dv^{3} \tilde{f}_{\boldsymbol{k}}(z, v_{\parallel}, \mu) = \int_{-v_{max}}^{v_{max}} dv_{\parallel} \int_{0}^{v_{max}} dv_{\perp} 2\pi v_{\perp} \tilde{f}_{\boldsymbol{k}}(z, v_{\parallel}, \mu)$$

補足4.バッチジョブスクリプトsub.qを設定する。

シェル環境によってはsub.q内moduleコマンドがうまく働かない場合があるようです。(tcsh等)

【対処方法】 sub.q 内に以下のコマンドを加えることで陽にmoduleコマンドを有効化できます。

※ Module load NECNLC-sx の直前に追加。

